Zöldség

A szénről, mint növényi tápelemről ritkán beszélünk – I. rész: a szén-dioxid-trágyázás elméleti alapjai

Agrofórum Online

A termesztett növények megközelítőleg 80–85%-ban vízből és 15–20% szárazanyagból állnak, mely arány a növény fajától/fajtájától, a növény korától, a termesztési körülményektől függően kismértékben változik. A zöldségfélék általában lédúsabbak, mint a szántóföldi növények (pl. gabonafélék), ami nemcsak a termésre, de magára az egész növényre (lombozatra) is igaz. A fiatalabb növények víztartalma magasabb, mint az idősebbeké, az öntözött körülmények között termesztettek szárazanyag-tartalma alacsonyabb.

A szárazanyag döntő többségét három elem alkotja: 42-45%-ban szén, 40-42%-ban oxigén és 6-7%-ban hidrogén. A fennmaradó további 6-7%-ot közel 18-20 elem teszi ki, ezek mennyisége jelentős mértékben eltér, csoportosításuk egyik gyakori módja is ezen az alapon történik (makroelemek, mezoelemek és mikroelemek). A szenet, az oxigént (döntő többségében a levegőből veszik fel a növények), míg a hidrogént elsősorban a vízből hasznosítják. Ebből következik, hogy a szárazanyag-képzéshez szükséges elemek döntő többségét a levegő szolgáltatja.

Szén beépülése a növénybe

Ismert biokémiai folyamat az asszimiláció, amely során a növény szén-dioxid felvétele mellett oxigént bocsát ki. Zárt helyiségekben, így a növénytermesztő létesítmények légterében is (üvegházakban és fóliasátrak alatt) az asszimiláció következtében az oxigén feldúsul a szén-dioxid rovására, ami egy idő után lassíthatja a növény növekedését, közvetve vagy közvetlenül csökkenti a termést. Ebből adódóan, a sikeres termesztés érdekében, szükségessé válik a levegő összetételének változtatása, azaz a CO2 pótlása, amit technológiai szaknyelven csak szén-dioxid-trágyázásnak nevezünk.

A szerves anyag felhalmozásának folyamata a fotoszintézis, amely során a fény energiáját felhasználva, a növények a légköri szén-dioxidot megkötik, fotoszintézissel cukorrá, illetve keményítővé alakítják át. Maga a fotoszintézis ennél lényegesen összetettebb, sokkal szerteágazóbb élettani és biokémiai folyamat, számos ponton kapcsolódik más biokémiai reakciókhoz.

A folyamat nem minden növény esetében azonos. Az úgynevezett C3-as növényfajok, a szén-dioxid és az oxigén közvetlen rögzítését az úgynevezett RuBisCO enzim (ribulóz-1,5-biszfoszfát-karboxiláz-oxigenáz) segítségével végzik, amely enzim képes oxigént is megkötni, azonban, hogy melyik folyamat játszódik le, azt a két gáz koncentrációja, illetve koncentrációjának aránya határozza meg. 50 ppm CO2 felett a szén-dioxid megkötése történik, amit a fény intenzitása is befolyásol. Szabadban az oxigén és a szén-dioxid légköri aránya az említett RuBisCO enzim aktivitását teszi lehetővé, vagyis a szén-dioxid beépülését segíti elő. Amennyiben a növény környezetének szén-dioxid-tartalma jelentősen lecsökken, az enzim működése átvált az oxigén megkötésére, és a fotoszintézis leáll, ami légmentesen zárt térben, például üvegházban vagy fólia alatt okozhatja a fotoszintézis hatékonyságának romlását, vagy akár a leállását is.

A zöldnövények másik csoportját az úgynevezett C4 típusú fajok képezik, amelyek az ATP-én keresztül kötik meg a szén-dioxidot, ide csupán a kukoricát, a kölest, a cirkot és a cukornádat, továbbá néhány kisebb jelentőségű egyszikűt sorolunk. A növények legnagyobb része, így a termesztett fajok döntő többsége (94%) a C3-as csoporthoz tartozik, hasonlóan a üvegházakban és fóliák alatt hajtatott növények is (paprika, paradicsom, padlizsán, uborka, sárgadinnye, fejes saláta stb.). Ezeknél a fajoknál a szén-dioxid fixálásában részt vevő enzim(ek) működését alapvetően két tényezőcsoport határozza meg:

  • a levegő összetétele – azaz a szén-dioxid/oxigén aránya, illetve
  • a klimatikus tényezők – azaz a fényintenzitás és a léghőmérséklet.

Vagyis magasabb szén-dioxid- és alacsonyabb oxigéntartalmú levegő esetén, magasabb hőmérsékleten (20-25 0C-on vagy felette), kedvező fényviszonyok mellett (10 W/m2 felett) egy határig intenzívebb az asszimiláció, azaz kedvezőbb a zöldtömeg képződése.

Széndioxid-mérleg

Mint az ásványi tápanyagok esetében a CO2 esetében is, célszerű az igényt és a forrást egybevetni, mérleget készíteni, és mérlegszemlélettel gondolkodni.

Források:

  • A légkör CO2-tartalma az utóbbi fél évszázadban 310 ppm-ről napjainkra 420 ppm-re emelkedett. Nem tekinthető állandó értéknek, időjárástól és az évszakoktól függően változik, májusban mindig magasabb, októberben alacsonyabb, lakott területek környékén magasabb, erdők közelében alacsonyabb. 420 ppm koncentráció megfelel 0,76 g/m3 CO2-tartalomnak, vagyis fényviszonyoktól és a hőmérséklettől függően 13-20 m3 levegő 1 m2 felületen termesztett növény számára tartalmaz elegendő szén-dioxidot.
  • Maga a talaj is bocsát ki szén-dioxidot, átlagosan napi 2-5 g/m2 mennyiséggel számolhatunk, de ez humuszban gazdag, erősen szervestrágyázott (10-20 kg/m2) hajtatóházi talajok esetében, akár a 8-10 g/m2/nap mennyiséget is elérheti, esetleg meg is haladhatja. Izolált közegen történő termesztés esetén (pl. perlit, kőgyapot vagy konténeres, azaz vödrös termesztésnél, illetve talajtakarás esetén) a növény szén-dioxid-igényének csak töredéke képződik, megállapítható, hogy mint szén-dioxid-forrás, gyakorlatilag nem is létezik.
  • A disszimiláció, azaz a növény légzése következtében, éjjel is képződik CO2, amit a növény a reggeli órákban jól tud hasznosítani. Mennyisége az éjszaka, azaz a sötét periódus hosszától, és a léghőmérséklettől függően 10-20 g/m2.

Felhasználás:

  • 1 m2 levélfelület óránként 2-3 g, azaz 1-1,5 liter szén-dioxidot képes felvenni optimális fény és hő viszonyok mellett (1 liter CO2 tömege 20 0C-on 2 gramm). Támrendszeres uborka, paradicsom vagy paprika hajtatása esetében 1 m2 talajfelületre ~ 5 m2 levélfelület jut, amiből következik, hogy 1 m2 üvegházi alapterületre számítva 5-7,5 literre, azaz 10-15 g CO2-re van a növénynek szüksége óránként.

Az anyagcsere folyamán az asszimiláció, azaz CO2-felvétel mellett, disszimiláció, azaz CO2-leadás is történik. Ha több szén-dioxidot vesz fel a növény, mint amennyit lead, akkor gyarapodik a zöldtömeg, fordított esetben viszont csökken a képződő szárazanyag mennyisége. A kettő, azaz az asszimiláció (fotoszintézis) és a disszimiláció (légzés) különbözetét nettó fotoszintézisnek nevezzük, azt az értéket, amikor a két folyamat egyensúlyban van, a kompenzációs pontnak mondjuk.

Egybevetve az üvegház légterében meglévő szén-dioxidot, a talaj által kibocsátott és az éjszaka képződő mennyiséggel, megállapítható, hogy nem fedezik a növény igényét. Csak óránkénti kb. 50-60-szoros légcserével, vagy a szén-dioxid mesterséges adagolásával lehet a növény optimális növekedéséhez szükséges CO2-ot biztosítani.

Agrofórum Hírlevél
Iratkozzon fel az Agrofórum hírlevélre!

A feliratkozást követően a rendszer egy megerősítő emailt fog küldeni a megadott email címre. Ha nem érkezne meg a levél, kérjük nézze meg a spam vagy Gmail esetén a Promóciók és az Összes levél mappát.

A zöldhagyma hajtatása: fólia alatt a fagyot is elviseli

2024. december 11. 11:10

Vannak, akik már ősszel talajba duggatják, és a tél folyamán fóliát húznak rá, a hideg, nagyobb fagyok beállta előtt fóliával betakarják.

Növénytermesztés egész évben: így építsünk walipinit!

2024. december 11. 06:40

A hagyományos, felszín feletti üvegházakkal ellentétben a walipini üvegház a föld természetes szigetelését és a napenergiát használja.

16 zöldség, amit télen is termeszthetünk

2024. december 5. 06:40

A tartós hideg hatására a növények anyagcseréje lelassul, és a cukor, valamint más ízanyagok a levelekben, gyökerekben és gumókban halmozódnak fel.

Fóliasátrak saját célú zöldségellátásra, II. rész – Fóliatípusok, tartozékaik, építésük és üzemeltetésük

2024. december 4. 11:40

Építésnél ügyeljünk arra, hogy a széllel, viharokkal szembeni biztonságot csak a tökéletesen megfeszített fólia adja!

A trágyázás és a minőség összefüggése a primőrök termesztésében

2022. március 11. 04:36

Az egyes kémiai elemek (növényi tápelemek) hatása nagyon eltérő, tekintettel arra, hogy különféle élettani folyamatokban vesznek részt, ennek megfelelően hiányuk és túladagolásuk is a legkülönfélébb módon jelentkezik, a termésminőséget számos vonatkozásban befolyásolják.

Jó időzítéssel és megosztással fokozható a tápanyagellátás hatékonysága a szabadföldi zöldségtermesztésben II.

2023. június 2. 09:16

A zöldségtermesztésben a trágyázás hatékonysága jelentős mértékben javítható a megfelelő időben és elosztásban adott tápanyagokkal.

Szabadföldi étkezési paprika tápanyag-mérleg szerinti trágyázása, II. – Tápanyagszámítás és -megosztás

2023. október 7. 15:10

Az étkezési paprika különösen igényes zöldségnövénynek számít vízellátás és tápanyag-adagolás szempontjából. Gyorsan és „érzékenyen” reagál a vízhiányra, és a tápelemek túladagolására is, ami jelentős termésveszteséget, minőségromlást eredményezhet.

Február eleje óta lehet fejtrágyázni

2019. február 10. 10:33

A trágyázási tilalmi időszak február 15-én ér véget, ugyanakkor a termésnövelő anyagok kijuttatása továbbra is az időjárástól függ.